MAGIC DAB ETI Audio Decoder

Hardware/Software Description
M A G I C

E T I A u d i o D e c o d e r

H a r d w a r e / S o f t w a r e D e s c r i p t i o n
Content

1 SAFETY 9
 1.1 Introduction 9
 1.2 General safety requirements 9
 1.3 Appearance of the safety instructions 10
 1.3.1 Classification of safety instructions 10
 1.3.2 Symbols 10

2 INTRODUCTION 12

3 MECHANICAL DESIGN 13

4 SYSTEM DESCRIPTION 15
 4.1 The circuit „Interface Unit“ 16
 4.2 The ISO/MPEG Decoder 18

5 CONFIGURATION OF THE SYSTEM 19
 5.1 Configuration of the 2 Mbit/s (E1) Interface 19
 5.2 Configuration of the headroom of the analogue output 20
 5.3 Configuration of the AES/EBU Module 21

6 PUTTING THE MAGIC ETI DECODER INTO OPERATION 23
 6.1 Mounting 23
 6.2 Connection to the mains voltage 23
 6.3 Signalling LEDs 24
 6.4 Operating Keys on the front panel 24
 6.5 Replacing the fuse 24
 6.6 Connection of the ETI Decoder in the DAB network 25
 6.7 Connection of the Systems 26

7 WINDOWS PC SOFTWARE ETI DECODER 27
 7.1 Hardware requirements 27
 7.2 Installation of the Windows PC Software 27
 7.3 Elements of the graphical user interface 29
 7.4 Menu File 29
 7.4.1 Submenu Exit 29
 7.5 Menu Configuration - Basic configuration of the system 29
 7.5.1 Submenu Com Port 30
 7.5.2 Submenu System Configuration 30
 7.5.3 Submenu Administration Password 33
 7.6 Menu Administration 35
 7.6.1 Submenu System Panel 35
1 SAFETY

1.1 Introduction

This system has been developed in line with the present state-of-the-art and fulfils the current national and international safety requirements. It is provided with a high degree of operational safety resulting from many years of development experience and continuous stringent quality checks in our company.

In normal operation, this system is safe.

There are, however, some potential sources of danger that cannot be completely eliminated.

This Hardware Description therefore contains basic safety instructions that must be observed during system configuration and operation. This Hardware Description must be read before the system is used and the current version of the document must always be kept close to the equipment.

All safety instructions have a uniform appearance. This appearance is described in detail in CHAPTER 1.3.

1.2 General safety requirements

In order to keep the technically unavoidable residual risk to a minimum, it is imperative to observe the following rules:

- Transport, storage and operation of the unit/system must be under the permissible conditions only.
- Installation, configuration and disassembly must be carried out only by expert personnel and with reference to the respective documentation.
- The system must be operated by expert and authorised users only.
- The system must not be operated unless it is in perfect working order.
- Any conversions or changes to the system or parts of the system (including the software) must be carried out by qualified personnel from our company or by expert personnel authorised by our company.
 All changes carried out by other persons lead to a complete exemption from liability.
- The removal or disabling of safety facilities, the clearing of faults and errors, and the maintenance of the equipment must be carried out by specially qualified personnel only.
- Non-system software is used at one’s own risk. The use/installation of non-system software can adversely affect the normal functioning of the system software.
- Only use tested and virus-free data carriers!
1.3 Appearance of the safety instructions

All safety instructions include a **signal word** that classifies the danger and a **text block** that contains descriptions of the type and cause of the danger, the consequences of ignoring the safety instruction and the measures that can be taken to minimise the danger. In some safety instructions, a **warning symbol** is placed underneath the signal word (see also CHAPTER 1.3.2):

<table>
<thead>
<tr>
<th>Signal Word</th>
<th>Type and cause of danger</th>
<th>Measures to minimise the danger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Possible consequences of ignoring the safety instruction</td>
<td></td>
</tr>
</tbody>
</table>

1.3.1 Classification of safety instructions

There are five classes of safety instructions: “Danger”, “Warning”, “Caution”, “Notice” and “Important”. The classification is shown in the following table.

<table>
<thead>
<tr>
<th>SIGNAL WORDS AND THE RESULTS OF IGNORING THE SAFETY INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
</tr>
<tr>
<td>Signal word</td>
</tr>
<tr>
<td>DANGER</td>
</tr>
<tr>
<td>WARNING</td>
</tr>
<tr>
<td>CAUTION</td>
</tr>
<tr>
<td>NOTICE</td>
</tr>
<tr>
<td>IMPORTANT</td>
</tr>
</tbody>
</table>

The signal word “Note” is also used in this Hardware Description. Text passages marked in this way do not describe a danger, but rather contain reminders, tips and general information to ensure optimum operation of the system.

1.3.2 Symbols

The following warning symbols are used:

<table>
<thead>
<tr>
<th>WARNING SYMBOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>!</td>
</tr>
</tbody>
</table>
The safety instructions classified “Danger”, “Warning” and “Caution” always include a warning symbol. “Notice” and “Important” safety instructions sometimes include a warning symbol.
The MAGIC ETI Audio Decoder allows the monitoring of DAB signals with ETI (NA,G.704) and ETI (NI,G.703) format. The system monitors all audio and data channels in the ETI data stream and can decode one audio channel.

The system can be configured using a simple Windows application software which also allows detailed evaluation of the ETI data stream and a detailed fault analysis.
The functions of the MAGIC ETI Decoder are integrated on a single PCB. The system is accommodated in a 19" housing (1 U). It can also be mounted in an ETSI rack.

FIG. 1 FRONT VIEW: MAGIC ETI DECODER

Control LEDs

Operating Keys
The functional elements of the systems are shown in FIG. 2.

FIG. 2 BLOCK DIAGRAM OF THE MAGIC ETI DECODER

The signal to be monitored is connected to the 2-Mbit/s interface of the ETI Audio Decoder system. The incoming signal will automatically and regenerated be connected without any modification to the 2-Mbit/s output interface.

One of the ETI audio streams can be decoded using the ISO/MPEG Layer II decoder and is available as an analogue audio signal.

The audio signal can also be in the digital format AES/EBU if the system is equipped with the optional AES/EBU module. The integrated Sample Rate Converter (SRC) synchronises the audio signal to a connected external clock. Alternatively, the clock can also be supplied by the system (internal clock).

The Windows PC software allows the configuration and control of the system over an RS232 interface. The User I/O interface and the HSD Relay interface can be used for external alarm signalling.

Remark **Functional Restrictions**

Presently the decoding of audio signals with 24-kHz sampling frequency is not supported.

PAD (Program Associated Data) is not available at the ADD. DATA interface.
4.1 The circuit „Interface Unit“

The Interface Unit provides the data multiplexing, the generation and the processing of the ETI protocol, as well as the monitoring of the ISO/MPEG coded audio signals and the control of the network interface.

A multiplexing frame in the E1/2-Mbit signal consists of 32 time slots, each with 8 bits. The frame length is 125µs (the frame frequency is 8-kHz). The frame structure is displayed in the following diagram:

FIG. 3 MULTIPLEX FRAME OF THE 2-MBIT/S SIGNAL (E1)

Time slot contains alternately the frame alignment signal and the service digits. The frame alignment signal is for synchronisation, whereas the service digits transmit alarms to the remote end. Time slot 16 is for the transmission of dialling information and cannot be used for the transport of data.

Two different frame formats have been defined for 2-Mbit/s data stream:

- the Double-Frame format
- the CRC4-Multi-Frame format

The Double-Frame format corresponds exactly with FIG. 3. In the CRC4-Multi-Frame format, a so called check bit is transmitted as the first bit of the frame alignment word.

The ETI(NA,G.704) signal is transmitted in time slots 1...15 and 17...31.

The ETI(NI, G.703) signal is transmitted in time slots 0...31.

The electrical characteristic of the E1 signal is according ITU G.703.

FIG. 4 shows the block diagram if the Interface Unit. Central elements are the ETI processing component and the Demux DSP.

The ETI DSP is responsible for the control of the complete signal and for the evaluation of the ETI signal.

The Demux DSP is responsible for the complete data multiplexing. The use of programmable logic devices permits the realisation of flexible implementations.

The PLL circuit supports all necessary clock signals such as the 48-kHz sampling clock for the Audio Decoder.
The Digital IO circuit generates the control signals for the operator circuit. Also the interface adaption is implemented in this circuit, as is also the case in Line, Data and Extension Bus circuits. The user data will be transmitted via programmable logic to the data processing DSPs.
4.2 The ISO/MPEG Decoder

The Audio Decoder can decode all ISO/MPEG Layer II and ISO/MPEG Layer III coded data streams, which comply with the ISO/IEC 11172-3 standard. The following modes are possible:

- **STEREO**
- **JOINT STEREO**
- **DUAL CHANNEL**
- **MONO**

Sampling frequencies of 32-kHz, 44.1-kHz and 48-kHz are supported. If pre-emphasis signals (J.17, 50/15 µs) are detected in the coded audio data signals, de-emphasis filters are automatically used in the decoder.

The audio output is realised electronic balanced.

The decoder circuit consists of a DSP and a micro controller. The software for both can be loaded into a Flash Eprom.

Attention

The MAGIC Encoding Systems support seamless switching of audio modes and audio data rates. However, the switching of half-sampling frequencies (24-kHz in DAB) by the encoder can only be realised with disturbances. The Decoder can also process these types of re-configurations without disturbances. However, switching from Mono to Stereo (Stereo, Dual Channel, Joint Stereo) and vice versa will have short breaks.

Presently, half-sampling frequencies cannot be decoded by the Audio Decoder.

FIG. 5 BLOCK DIAGRAM OF THE AUDIO DECODER
5.1 Configuration of the 2 Mbit/s (E1) Interface

Nearly all parameters of the MAGIC ETI Decoder system can be configured by the Windows PC software.

Only the 2-Mbit interface must be configured for balanced or unbalanced operation. The systems will be delivered in the operation mode which is ordered.

FIG. 8 shows a picture of the 2-Mbit/s module. Unless used as a converter (see below), it should be ensured that all jumpers are inserted in the same row. In addition it is possible to configure the system for T1 (USA and Asia) networks. All settings are for the 2-Mbit input, 2-Mbit output, clock input and clock output.

To open the system please remove the four front screws and the screw on the left side. Then you can remove the front. Press with both hands on the cover and drag the cover in your direction.

Remark

The system can be also used as a converter from balanced to unbalanced signal lines. For this purpose the jumpers can be set in different rows.

Warning

Dangerous voltages are present, when unit is opened!

If the jumper positions must be changed, please remove the power cable.

In doubt please leave the configuration to service personnel.

FIG. 6 POSITION OF THE JUMPERS TO CONFIGURE THE E1/T1 LINE INTERFACE
5.2 Configuration of the headroom of the analogue output

The jumpers for the configuration of the headroom are located as shown in FIG. 7. Before changing the settings please make sure, that the power supply cable is disconnected. The figure below shows the setting of the jumpers. The following settings can be selected:

- 6 dB Headroom and
- 10 dB Headroom.

Important The jumpers for the left and right channels must be configured in the same way.

The factory setting is 6 dB headroom since the MAGIC Encoder systems are also configured with 6 dB headroom.

FIG. 7 CONFIGURATION OF THE HEADROOM OF THE ANALOGUE OUTPUT
5.3 Configuration of the AES/EBU Module

If an AES/EBU module is fitted, the digital output of the ISO/MPEG Decoder can be used. There is no need of a hardware setting. The interface can be configured by PC software.

It is possible to equip the AES/EBU module by itself later.
6 P U T T I N G T H E M A G I C E T I D E C O D E R I N T O O P E R A T I O N

6.1 Mounting

With dimensions \((W \times H \times D)\) of 439 mm \(\times\) 44.5 mm \((1\,\text{U})\) \(\times\) 395 mm, the MAGIC ETI Decoder can be used as a table-top unit or, equipped with mounting brackets, can be installed in ETSI or 19-inch racks.

The dimensions given above are valid for the table-top version with neither mounting brackets nor feet. If the MAGIC system is to be inserted into a rack, it should be remembered that the bending radius of the cables should always be greater than the minimum allowed value.

If the MAGIC system is installed in a rack, it should also be ensured that sufficient ventilation is provided. It is recommended that at least 3 cm space is left. As a rule, the ambient temperature should not lie outside the range \(+5^\circ\text{C}\) to \(+40^\circ\text{C}\). These limits are of particular importance if the MAGIC system is inserted in a rack.

During operation, the humidity must lie between 5% and 85%.

Notice

Incorrect ambient temperature and humidity can lead to equipment failure

Operation of the unit outside the above limits invalidates the warranty. The MAGIC system must therefore be operated within the specified limits.

6.2 Connection to the mains voltage

The MAGIC system can be operated with a voltage (mains) between 90 and 253 V without the need for switching. The mains frequency can vary between 45 Hz and 65 Hz. The power consumption is a maximum of approx. 35 W. The housing must be earthed (grounded) in accordance with local regulations. This earthing is usually realised via the protective conductor of the mains cable. If the mains cable does not have a protective conductor, however, the device must be earthed via the earthing bolt at the rear of the unit.

Warning

Dangerous voltages in the event of improper earthing!

If there is improper earthing, dangerously high voltages can be present on the unit housing in the event of a fault.

Do not use extension cables without protective earth contacts!

In case of doubt, use additional earthing!

After the unit is switched on, the green “POWER” LED should light up. An internal reset is then triggered. This is indicated by a blinking “ALARM” LED. After approximately twenty seconds, the unit is operational.
6.3 Signalling LEDs

There are six LEDs for signalling on the MAGIC ETI Decoder system.

(1) **POWER** green
Lights up when the operating voltage (+5V only) is present.

(2) **SYNC** green
Lights up when ISO/MPEG Decoder is synchronised.

(3) **CONNECT** green
Lights up when the ETI frame has been synchronised with.

(4) **ALARM** red
This LED lights up if a fault has occurred in the unit.

(5) **LEVEL** yellow
Level indication for the left and right audio channel. These LEDs lights up when the signal level is greater than -24 dBr below the configured nominal output level of the decoder.

6.4 Operating Keys on the front panel

The three keys on the front panel allows one to select the audio program which is to be decoded

- **#1**: Select previous Audio program in the ETI data stream
- **#2**: Select first Audio program in the ETI data stream
- **#3**: Select next Audio program in the ETI data stream

Please note, that there is no rotating functionality on these keys.

6.5 Replacing the fuse

The mains side is protected by a fuse that is soldered into the power supply unit. This fuse must only be replaced by service personnel only.

Warning

Dangerous voltages!

Do not open the system. Please ask service personnel for help.
6.6 Connection of the ETI Decoder in the DAB network

Before the system is put into operation please define its location. The Ensemble Multiplexer DM-001 from Rohde & Schwarz provides two ETI outputs (see FIG. 9). One can be used for the transmission of the ETI signal to DAB transmitters, the other one for the connection of the ETI Audio Decoder. If the system is to be used at the transmitter location the ETI Audio Decoder has to be connected into the ETI signal transmission path. The system loops the incoming and regenerated 2-Mbit signal to the 2-Mbit output (see FIG. 10).

Remark

If you use the looped 2-Mbit output a break in the ETI Audio Decoder will result in an interruption in the ETI transmission path.

The loop in the ETI Audio Decoder will be implemented in the last component of the 2-Mbit interface. Only a defect of this component and a defect of the power supply will cause an interruption in the ETI signal path.

In the following application the ETI Audio Decoder is connected to the Ensemble Multiplexer DM-001 from Rohde & Schwarz.

FIG. 9 APPLICATION WITH THE ETI AUDIO DECODER

<table>
<thead>
<tr>
<th>Possible Channel Configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 0</td>
</tr>
<tr>
<td>G.704</td>
</tr>
</tbody>
</table>
6.7 Connection of the Systems

The following figure shows how the system should be connected. If possible, the balanced interface should be used, because longer distances with less disturbances can be achieved (see CHAPTER 5.1, Configuration of the 2 Mbit/s (E1) Interface).

FIG. 10 CONNECTION DIAGRAM (UNBALANCED, BALANCED)

Unbalanced

- Ensemble Multiplexer (e.g. DM-001)
- ETI
- ETI
- Active Loudspeaker
- Alarm Signalling via Relais
- PC for Configuration and Control
- ETI
- ETI

Balanced

- Ensemble Multiplexer (e.g. DM-001)
- ETI
- ETI
- Active Loudspeaker
- Alarm Signalling via Relais
- PC for Configuration and Control
- ETI
- ETI
The configuration of the system is possible with the delivered Windows PC Software.

7.1 Hardware requirements

The following minimum requirements are necessary for the PC:

- IBM PC AT, IBM PS/2 or 100% compatible
- Pentium Processor (> 133 MHz) recommended
- Windows 95/98/ME/NT 4.0 (SP4.0)/ME
- 5 MB free disk space
- IBM SVGA graphic adapter with 800 x 600 pixel
- at least one free serial interface RS-232
- Microsoft, IBM PS/2 or 100% software compatible mouse

7.2 Installation of the Windows PC Software

Insert the CD included in delivery in your disk drive. After a short time, the installation interface is displayed in your browser. If it is not opened automatically, you can start the interface also manually. Select your disk drive in the Explorer and double click on the file `Start.bat`.

Please press the **MAGIC ETI Audio Decoder** button to install the MAGIC ETI Decoder Software.

By the way, warnings because of ActiveX Scripts can be ignored.
Windows PC Software ETI Decoder

Please follow the instructions of the installation software.

After installation you will find the *ETI Decoder* icon to start the software.

Connect your PC (RS232) via a Nullmodem cable (Pin 2 and Pin 3 is crossed, not delivered with the system) with the ETI Audio Decoder system.

Switch on the system.
7.3 Elements of the graphical user interface

In the following figure all elements of the graphical user interface are described.

All functionalities will be described in detail in the following chapters.

FIG. 12 ELEMENTS OF THE WINDOWS SOFTWARE ETI DECODER

7.4 Menu File

7.4.1 Submenu Exit

Via the submenu **File -> Exit** the program will be closed.

7.5 Menu Configuration - Basic configuration of the system

After booting the system and connection with a PC you will see in the status line the message **PC connected**.
7.5.1 Submenu Com Port

If the message **PC not connected**\(^1\) appears, please check the selected COM port under the submenu **Configuration -> COM Port** and change the settings. Factory settings are: **19200 Baud** and **Parity None**.

![FIG. 13 COM PORT KONFIGURATION](image)

7.5.2 Submenu System Configuration

7.5.2.1 Configuration of the Line interface

![FIG. 14 CONFIGURATION OF THE LINE INTERFACE](image)

The page **Line Interface** allows the configuration of the **2-Mbit/s** interface.

As reference clock you should normally select **Recovered Clock**. This setting generates the clock from the incoming 2-Mbit signal. Alternatively you can use the setting **External Clock**, if you have connected an external clock to the clock input. The setting **Internal Clock** is only for test purposes. In this case the clock is generated by the system.

\(^1\) If the connection is faulty try 9600 Baud and Parity Odd.
The both 2-Mbit formats **Double-Frame** and **CRC4-Multi-Frame** depends from your 2-Mbit/s network.

Remark

Please ask for details your network provider.

If you have connected the MAGIC System to the Rohde & Schwarz Ensemble Multiplexer DM001 please select the Double-Frame format, because the DM001 supports only this format.

Depending on your ETI signal you must select **ETI (NA, G.704)** or **ETI (NI, G.703)**.

7.5.2.2 Configuration of the Audio Interface

FIG. 15 CONFIGURATION OF THE AUDIO INTERFACE

The page **Audio** allows the configuration of the audio interface.

As **Output** interface you can select **analog** or **digital**, if you have equipped an optional AES/EBU module.

The selection **AES/EBU clock** allows to synchronize the digital output signal to a connected **External** clock (via Sampling Rate Converter). If you select **Internal** clock the output of the digital audio signal will be synchronised to the internal clock.

Using the analog output interface you can adapt the **Output Level** from -20 dBu to +12 dBu (seven different levels are available).

The **Level Control Interval** of the level control circuit can be set from 5 to 60 seconds. If the level is lower than 24 dBr as the nominal level in between the selected interval you will get a warning.

The **Decoder Alarm Sensitivity Low** avoids error signalling which can appears during a reconfiguration or other changes in the signal. If the sensitivity is **High** each error in the signal will be shown as an alarm.

Remark

Please ask for details your network provider.

If you have connected the MAGIC System to the Rohde & Schwarz Ensemble Multiplexer DM001 please select the Double-Frame format, because the DM001 supports only this format.
7.5.2.3 Configuration of the front buttons

![Configuration of the front buttons](image)

Via the page **Buttons** you can *lock* the **Front-Panel-Buttons**. In this case you can’t change the decoded program using the front buttons.

Activating the **Beep** you will hear on each pressing of a button a short beep.

7.5.2.4 Configuration of the default decoded Audio Subchannel

![Configuration of the default decoded Audio Subchannel](image)

If you wish that the decoder should decode a fixed program after power on, you must type in the field **Decoded Subchannel at Startup** the corresponding Subchannel ID.
The ETI Decoder allows internal storage of up to 7000 alarms. The following settings are available:

- **Off** switches the protocol function off
- **Cyclic** stores all messages in a ring buffer
- **Standard** stores all messages without a ring buffer and stops if buffer is full

The check box **Include local MPEG-Decoder Alarms in Protocol** enables storage of local Decoder alarms in the protocol list.

With **Set Time of ETI Decoder** you can set the Decoder time to the PC time. If the time is available in the ETI stream the system will decode the time information automatically.

7.5.3 Submenu Administration Password

To protect the system configuration from unauthorised access, you can assign a password via **Administration Password**. The password is stored on the PC.

Please enter the password under **Enter new Password**. Confirm your entry in the **Confirm Password** line.

Now, the configuration can only be changed after the password has been entered.
7.6 Menu Administration

7.6.1 Submenu System Panel

The submenu **System Panel** is only for Service purposes. Please use this panel only, if a service technician of AVT requested from you.

![System Panel](image)

7.6.2 Submenu Software Download

Via the menu **Administration -> Software Download** it is possible to download new firmware to the system.

The actual software you will find in the internet:

http://www.avt-nbg.de

If you have download a new software from the internet, you must first install the new software on your PC. After installation change to **Administration -> Software Download**, select the file **i2_eti**. Start the Update with the **Start** button. The bars **Program, Data, Eprom** shows the progress of the download. Download errors will be counted in the field **CRC Errors**.

Remark

The download can be successful, although errors are occurred.

After the download please switch off and on the system.
7.7 Menu Help

7.7.1 About ETI Decoder

The menu Help -> About ETI Decoder shows the information window of the software.

Here you can check the actual software versions of the different modules.
7.8 Displaying of the 2-Mbit/s Status

If the system is configured in the right way and the 2-Mbit is connected all LEDs of the 2-Mbit/s status lights green. The LED local N-Alarm must be lights green at latest after 4 minutes.

FIG. 23 2-MBIT STATUS

All LEDs can be lights in three different colors:

- **green**: no error
- **red**: error
- **blue**: error was occurred

The LEDs have the following meaning:

SIGNAL

This LED signals an error, if there is no HDB3 coded signal on the 2-Mbit line.

SYNChronisation

This LED signals an error, if there is no framing (G.704) on the 2-Mbit signal.

Alarm Indication Signal

This LED signals an error, if there were 2 or less ‘0’ in the last two frames of the 2-Mbit/s signal.

LOCAL Nondeferred-ALARM

This LED signals an error, if the local bit error rate is higher than 10e-06. This means there was one bit error in 4 minutes. After power on this alarm occurs normally for 4 minutes.

LOCAL Deferred-ALARM

This LED signals an error, if the local bit error rate is higher than 10e-03. A decoding of the signal is in this case not possible.
CLOCK

This LED signals an error, if there is no clock signal available on the clock input of the system. This alarm can only occur, if you have configured the clock source to *External Clock* (see CHAPTER 7.5.2.1).
Displaying of the ETI Status

Is the system synchronised to the ETI frame you can analyse the content of the ETI Status.

The LED Framing lights green, if the frame can be found.

The number of Audio and Data subchannels will be shown under Number of Subchannels.

If the Fast Information Channel is included into the ETI Data stream, you will get a message under FIC included.

The next text fields informs you about the DAB Mode, the Frame Length, the ETI Mode and the actual Error Level.

![ETI Status Table]

FIG. 24 ETI STATUS

To reset all blue LEDs press the button.

The button resets all error counters.

Remark

The storage of all error counters will be done in the system. If you switch off the system all counters will be lost.

Closing or starting the software has no effect for the counters, only the LEDs will be resetted.
7.10 Display of the System Alarm Counter

Using the page System Alarm Counter all alarms of the interface unit (IFE) will be shown. These alarm counters are corresponding to the 2-Mbit Status LEDs (see CHAPTER 7.8).

In addition all synchronisation errors of the ISO/MPEG Audio Decoder will be counted (ISO/MPEG Decoder not synced).

Remark Note, that this error counter has no relation to the error counter of the Audio subchannels (see CHAPTER 7.12).

The communication between the Interface unit and the ISO/MPEG Decoder is realized via the proprietary Extension Bus of the system. If there are errors in the communication between the units the error counter *No communication with Audio Decoder* will be increased.

FIG. 25 DISPLAYING OF THE SYSTEM ALARM COUNTER

<table>
<thead>
<tr>
<th>System Alarm Counter</th>
<th>Service Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>No communication with Audio Decoder</td>
<td>0</td>
</tr>
<tr>
<td>G703: No signal</td>
<td>0</td>
</tr>
<tr>
<td>G704: AIS error</td>
<td>0</td>
</tr>
<tr>
<td>G704: Loss of sync</td>
<td>0</td>
</tr>
<tr>
<td>G704: Local N-Alarm</td>
<td>0</td>
</tr>
<tr>
<td>G704: Local D-Alarm</td>
<td>0</td>
</tr>
<tr>
<td>ISO/MPEG-Decoder not synced</td>
<td>0</td>
</tr>
</tbody>
</table>

The button `Reset Counter` resets all error counters.

Remark The storage of all error counters will be done in the system. If you switch off the system all counters will be lost.

Closing or starting the software has no effect for the counters, only the LEDs will be resetted.
7.11 Displaying of the Service Organization

The page **Service Organization** gives information about the structure of each service in the ETI data stream. If a component is selected, the detailed information of the **Service Component** will be shown in the right window. A double-click to an audio component allows the listening of the corresponding audio program.

FIG. 26 DISPLAYING OF THE SERVICE ORGANIZATION

The button refreshs the displaying of the Service Organization.

Remark

Note, that changes in the Service Organization will not be shown automatically.
7.12 Status of the Subchannels

The list *Subchannels* shows all subchannels in the ETI data stream.

FIG. 27 SUBCHANNEL STATUS

<table>
<thead>
<tr>
<th>Status</th>
<th>SCID</th>
<th>Type</th>
<th>Primary</th>
<th>Prot. Level</th>
<th>SAD</th>
<th>Size</th>
<th>Rate</th>
<th>Mode</th>
<th>Freq</th>
<th>Copyright</th>
<th>Original</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>audio</td>
<td>yes</td>
<td>UEP 3</td>
<td>0 CU</td>
<td>140 CU</td>
<td>stereo</td>
<td></td>
<td>48 kHz</td>
<td>no</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>audio</td>
<td>yes</td>
<td>UEP 3</td>
<td>140 CU</td>
<td>140 CU</td>
<td>stereo</td>
<td></td>
<td>48 kHz</td>
<td>no</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>packet</td>
<td>data</td>
<td>no</td>
<td>EEP 3-H</td>
<td>200 CU</td>
<td>42 CU</td>
<td>56 kHz</td>
<td>48 kHz</td>
<td>no</td>
<td>no</td>
<td>0</td>
</tr>
</tbody>
</table>

The LED *Status* is green, if the ISO/MPEG frame of the audio program is synchronised.

SCID is the subchannel identifier of the subchannel.

Type marks the subchannel as audio or data.

The column *Primary* informs you, if a subchannel is primary or secondary.

The next column shows the *Protection Level* of each subchannel, follows by the *SAD* (Start Address) and *Size* of the subchannel in Capacity Units (*CU*).

The last columns informs you about the data rate *Rate*, the coding mode *Mode*, the sampling frequency *Freq.*, the status of the *Copyright* and *Original* Bits, which are part of the ISO/MPEG header.

The column *Errors* displays the number of errors in the ISO/MPEG header of the audio program. The marked audio subchannel will be decoded and can be heared.

Remark *In case of a sampling frequency of 24-kHz, it is at the moment not possible to listen this audio subchannel.*

To reset all blue LEDs press the *Reset LEDs* button.

The button *Reset Counter* resets all error counters.

Remark *The storage of all error counters will be done in the system. If you switch off the system all counters will be lost.*

Closing or starting the software has no effect for the counters, only the LEDs will be resetted.
The *SNMP Agent* option (oder no. 800700) allows the *MAGIC DAB ETI Decoder* to be connected to a Network Management System.

The following block diagram shows the basic functionality of the option:

The *MAGIC DAB ETI Decoder* is connected via its RS232 interface to the RS232 interface (Port 1) of the SNMP Agent (RS232/LAN converter which is included in the delivery).

For local system control and monitoring, a PC with *ETI Decoder* Software can be connected to the second RS232 interface (Port 2) of the SNMP Agent.

Remark

The local control via Port 2 is always given priority over the control via LAN.

The LAN interface of the SNMP Agent is connected with the network. In this way, the system can be controlled, configured and monitored remotely via the *ETI Decoder* Software, or it can be integrated in a Network Management System via SNMP.
8.1 Putting the SNMP Agent into operation

Please cable all components as shown in FIG. 28. In addition to the **ETI Deco-der** Software you need to install the **SNMP Agent** Software from your installation CD.

Then, please start the **SNMP Agent Admin** Software. FIG. 29 shows the main window of the administration software of the SNMP Agent.

Select **Search → Broadcast Search**¹ in the menu to search for all SNMP Agents in the network.

Please select the desired SNMP Agent and then, click on the **Configuration** menu. In the configuration dialog you can adjust the following settings²:

- **Ethernet**: all relevant network settings
- **Serial**: the parameters of the serial interface
- **System**: name and password

For the start-up, only the Ethernet settings are relevant at first. Please enter the desired IP address, the net mask and the gateway. You will get this information from your administrator. Under **IP Mode** please select **Static IP** and press the **OK** button afterwards.

1. If you already know the IP address of the SNMP Agent, you can also search via the menu item **Search by IP**.

2. To change settings, you need to enable the **Change ...** check box.
8.2 Configuration of the SNMP Agent

Please start now the ETI Decoder Software.

The default setting is a connection via a COM Port of the PC. With Configuration → Com Port the configuration dialog for the COM Port is displayed.

Please select the COM Port of your PC to which the SNMP Agent Port 2 is connected and also the desired baud rate (default setting: 19200 Baud).

In the status line of the ETI Decoder Software the message PC Connected is displayed.

The SNMP settings can now be configured under Configuration → System → SNMP.
Option: SNMP Agent

FIG. 32 CONFIGURATION OF THE SNMP AGENT

General

Enter a system name of your choice under **System name**. This name is also displayed in the **SNMP AGENT Admin** Software.

RS232 Interface Parameter

Please select under **Port 1 and Port 2** the baud rate with which you operate the **MAGIC DAB ETI Decoder**. By default, 19200 Baud is selected.

IP Parameter

Under **IP Parameter** you can set the **IP Address**, the **Netmask**, the IP address of the **Gateway** and the **Remote Ctrl. Port**. Except for the port, these settings are identical with the settings in the **SNMP AGENT Admin** Software (see FIG. 32). Please ask your network administrator for the correct settings.

Remark

*If you enter “0” for **Remote Ctrl. Port**, the remote control functionality via TCP/IP is locked (see CHAPTER 8.4).*

SNMP Parameter

The SNMP settings for the communication with your Network Management System can be configured under **SNMP Parameter**. Please ask your network administrator for the correct settings.
The SNMP Agent allows the addressing of two different Network Management Systems. Please enter the corresponding IP Addresses under **NMS IP Address 1** and **NMS IP Address 2**.

Under **SNMP Port** please enter the port of the Agent, at which it receives messages. As default setting you should enter **Port 161**.

The sender port for traps can be configured under **Trap Port**. The default setting is usually **Port 162**.

The **Public Community Name** is an identifier to read data. The name has to be identical with the name in your Management System. By default, the name **public** is used.

The **Private Community Name** is an identifier to read and write data. The name has to be identical with the name in your Management System. By default, the name **private** is used.

Under **Trap Community Name** you define the name for the trap datagrams. The name has to be identical with the name in your Management System. By default, the name **trap** is used.

If a trap is to be generated when wrong community names are used, please enable the option **Generate Authentication Failure Traps**.

Change Password

Remark

Please note that, at this point, you define the password for the SNMP Agent.

The password for the **ETI Decoder Software** is configured under **Configuration → Administration Password**.

By pressing the **Change Password** button, the window for entering the password for the SNMP Agent is displayed. Please enter the password under **Enter new Password**. Confirm your entry in the **Confirm Password** line.

FIG. 33 PASSWORD ENTRY OF THE SNMP AGENT

If the password is selected, only people who know the password can change the parameters of the SNMP Agent or execute a firmware upgrade of the SNMP Agent via the network by using the **SNMP AGENT Admin** Tool.

Attention

If you forget the password, the SNMP Agent needs to be sent in to unlock it.

Alarm Settings

By clicking on the **Alarm Settings** button, the dialog for the configuration of all possible alarms is displayed.
Every alarm\(^1\) which can be monitored in a Network Management System is displayed in the list:

- The **Type** column shows the alarm type:
 - **Multiplexer**: the alarm refers to the hardware multiplexer of the system.
 - **MPEG Decoder**: the alarm signals an error in the MPEG Decoder of the system.
 - Additionally, three further types are available, which can be considered as global alarm:
 - **Sync. Status**: this alarm is set, if the ETI frame signal is faulty
 - **Audio Stream**: this alarm is set, if an Audio stream is faulty
 - **SNMP Agent**: this alarm is set, if the communication between the system and the SNMP Agent is faulty (e.g. power supply error in the system).

- Under **No.**, the index of the alarm is displayed for each type.

- In the **Name** column you will find a more detailed description of the alarm. If you click on an alarm, you can also assign your own alarm name under **Alarm Details**.

- Via the **Grading** entry you can define the importance of an alarm (alarm or warning). Less important alarms (e.g. level alarms) can be marked by activating the **Warning** option in the **Alarm Details**.

- If an alarm is to be written in the **MIB File**, please activate the **MIB** (Management Information Base) option.

\(^1\) Certain alarms are only listed for the reason of compatibility with other products, however, they are not important for the **MAGIC DAB ETI Decoder**. These alarms are marked with ".##<nr>".
Option: SNMP Agent

- If additionally a Trap is to be generated when the alarm status changes, please enable the option Generate Trap on change.

Remark

Changes need to be confirmed with the Modify button.

After certain changes in the SNMP Agent, it needs to be restarted. In this way, all connections are disconnected. Please establish the connection again by remote control via TCP/IP by pressing the Connect button.

![FIG. 35 DIALOG IF NO TCP/IP CONNECTION EXISTS](image)

Therewith the configuration of the SNMP Agent is finished.
8.3 Integration into the Network Management System

To integrate the **MAGIC DAB ETI Decoder** into your Network Management System you need to import the MIB file `AVT-ETI-DECODER.mib`, which can be found in the installation directory of the SNMP Agent (`<installation directory>\AVT SNMP Agent`), into your Management System.

FIG. 36 MIB FILE (ABSTRACT)

The **MIB Enterprise ID** for AVT Audio Video Technologies GmbH is:

26196

The alarm status for all listed alarms is defined in the following way:

- `ok` = 1
- `error` = 2
- `warning` = 3
8.4 Remote Control via LAN

With the **SNMP Agent** option you also have the possibility to control and monitor the system via the network by using the **ETI Decoder** Software.

Remark

Please note that local control is always given priority over control via network. As soon as the **ETI Decoder** Software is started locally at Port 2 of the SNMP Agent, remote control via TCP/IP is automatically interrupted.

To activate the TCP/IP interface please open the dialog for the administration of the control interfaces via the menu **Configuration → COM Port**.

Please press the **Switch to TCP/IP Control Interface** button to activate the control interface via TCP/IP.

![FIG. 37 COM PORT CONFIGURATION FOR TCP/IP ACCESS](image)

In the following dialog, you enter the **Port** (Default setting: 10000) and the **IP Address** (see FIG. 30), under which the SNMP Agent is accessible.

![FIG. 38 TCP/IP PARAMETER](image)
After pressing the **OK** button, the connection is being established.

Remark

If you cannot establish a connection via the network, maybe the port in the SNMP Agent needs to be configured via local control. Please press under **Configuration → Com Port** the **Switch to RS232 Control Interface** button. Select the COM Port of the PC to which the SNMP Agent is connected. Under **Configuration → System → SNMP → IP Parameter → Remote Ctrl. Port** please enter the desired port (see also FIG. 32).
The following figure shows the rear view of the MAGIC ETI Decoder.

FIG. 39 REAR VIEW OF THE SYSTEM

All interfaces are described in detail in the following.
A1.1 E1(2-Mbit/s) Interface

This interface supports up to 32 64-kbit/s channels using ITU recommendation G.703/G.704.

A1.1.1 Unbalanced E1 Interface

TAB. 3 PIN ASSIGNMENT: UNBALANCED E1 INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data - F1 in / F1 out</td>
<td>Amplitude: 3 Vpp 75 Ω unbalanced Range: 100 m</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

TAB. 4 PIN ASSIGNMENT: UNBALANCED CLOCK INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data - T3 in / T3 out</td>
<td>Amplitude: 0.5 ... 1.9 Vpp (Input) 1.5 Vpp (Output) Impedance: 75 Ω unbalanced Range: 100 m</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

A1.1.2 Balanced E1 Interface

TAB. 5 PIN ASSIGNMENT: BALANCED E1/T1 INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>Amplitude: 3 Vpp acc. G.703 Impedance: 120 Ω bal. Range: 100 m</td>
</tr>
<tr>
<td>2</td>
<td>RXD a</td>
<td>Data in a Amplitude: 0.5 bis 1.9 Vpp (Input) 1.5 Vpp (Output)</td>
</tr>
<tr>
<td>3</td>
<td>TXD a</td>
<td>Data out a</td>
</tr>
<tr>
<td>4</td>
<td>RXCLK a</td>
<td>Clock in a</td>
</tr>
<tr>
<td>5</td>
<td>TXCLK a</td>
<td>Clock out a</td>
</tr>
<tr>
<td>6</td>
<td>RXD b</td>
<td>Data in b</td>
</tr>
<tr>
<td>7</td>
<td>TXD b</td>
<td>Data out b</td>
</tr>
<tr>
<td>8</td>
<td>RXCLK b</td>
<td>Clock in b</td>
</tr>
<tr>
<td>9</td>
<td>TXCLK b</td>
<td>Clock out b</td>
</tr>
</tbody>
</table>
TS16/X.21 Interface (Option)

This interface can’t be used in the ETI variant.

TAB. 6 PIN ASSIGNMENT: TS16 INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHIELD</td>
<td>Level: V.11</td>
</tr>
<tr>
<td>2</td>
<td>TXa</td>
<td>Transmit a (to network)</td>
</tr>
<tr>
<td>3</td>
<td>Ca</td>
<td>Control a (to network)</td>
</tr>
<tr>
<td>4</td>
<td>RXa</td>
<td>Receive a (from network)</td>
</tr>
<tr>
<td>5</td>
<td>ia</td>
<td>Indication (from network)</td>
</tr>
<tr>
<td>6</td>
<td>CLKa</td>
<td>Clock (from network)</td>
</tr>
<tr>
<td>7</td>
<td>B_CLKa</td>
<td>Byte clock (from network)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>TXb</td>
<td>Transmit Data (to network)</td>
</tr>
<tr>
<td>10</td>
<td>Cb</td>
<td>Control (to network)</td>
</tr>
<tr>
<td>11</td>
<td>RXb</td>
<td>Receive b (from network)</td>
</tr>
<tr>
<td>12</td>
<td>Ib</td>
<td>Indication (from network)</td>
</tr>
<tr>
<td>13</td>
<td>CLKb</td>
<td>Clock (from network)</td>
</tr>
<tr>
<td>14</td>
<td>B_CLKb</td>
<td>Byte clock (from network)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>not connected</td>
</tr>
</tbody>
</table>
A1.3 RS232C Interface

The RS232C interface is for the configuration and monitoring of the MAGIC ETI Decoder system from a PC.

TAB. 7 PIN ASSIGNMENT: RS232 INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not used</td>
<td>Type: DTE</td>
</tr>
<tr>
<td>2</td>
<td>RXD Receive Data</td>
<td>Level: V.24</td>
</tr>
<tr>
<td>3</td>
<td>TXD Transmit Data</td>
<td>Data rate: 300 to 38400 Baud</td>
</tr>
<tr>
<td>4</td>
<td>DTR Data terminal ready</td>
<td>Range: max. 15 m</td>
</tr>
<tr>
<td>5</td>
<td>GND Ground</td>
<td>Protocol: 1 start bit</td>
</tr>
<tr>
<td>6</td>
<td>DSR Data set ready</td>
<td>7 or 8 data bits<sup>a</sup></td>
</tr>
<tr>
<td>7</td>
<td>RTS Request to send</td>
<td>1 parity bit<sup>b</sup></td>
</tr>
<tr>
<td>8</td>
<td>CTS Clear to send</td>
<td>1 stop bit</td>
</tr>
<tr>
<td>9</td>
<td>not used</td>
<td></td>
</tr>
</tbody>
</table>

^a Pre-setting: 8 Bits
^b The following parities can be set: none, even, odd. Pre-setting: none

A1.4 TTL-USER-I/O Interface

This interface is used to transmit control signals to external units. Three of these signals are used for the control of the three relays. The other five signals are not in use.

TAB. 8 PIN ASSIGNMENT: TTL-USER-I/O INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TTL_1_IN/OUT</td>
<td>Level: TTL/CMOS</td>
</tr>
<tr>
<td>2</td>
<td>used for Relay 1</td>
<td>Max. Load: 20 mA</td>
</tr>
<tr>
<td>3</td>
<td>TTL_3_IN/OUT</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>used for Relay 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TTL_5_IN/OUT</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>used for Relay 3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TTL_7_IN/OUT</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TTL_8_IN/OUT</td>
<td></td>
</tr>
</tbody>
</table>
A1.5 LSD Interface

The LSD interface is for the transmission of low speed data.

This interface in this variant is not in use.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
<td>Carrier Detect, Type: DEE, Data rate: 300 to 38400 Baud, Level: V.24, Range: max. 15 m</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request To Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Ring Indication</td>
</tr>
</tbody>
</table>

A1.6 HSD Interface

This interface can be used as transparent data interface (High Speed Data).

This interface in this variant is not in use.

In addition on this socket the outputs of the three signalling relays are available.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>Type: DCE, Level: V.11, symm., Data Rate: max. 128 kbit/s, Range: 100 m</td>
</tr>
<tr>
<td>2</td>
<td>T a</td>
<td>Transmit a</td>
</tr>
<tr>
<td>3</td>
<td>Relay 1a</td>
<td>Power Fail 115/230VAC</td>
</tr>
<tr>
<td>4</td>
<td>R a</td>
<td>Receive a</td>
</tr>
<tr>
<td>5</td>
<td>Relay 2a</td>
<td>2-Mbit Alarm</td>
</tr>
<tr>
<td>6</td>
<td>S a</td>
<td>Signal Element Timing a</td>
</tr>
<tr>
<td>7</td>
<td>Relay 3a</td>
<td>ISO/MPEG Alarm, a disturbance of at least one ISO/MPEG header in the received ETI stream</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>T b</td>
<td>Transmit b</td>
</tr>
<tr>
<td>10</td>
<td>Relay 1b</td>
<td>Power Fail 115/230VAC</td>
</tr>
<tr>
<td>11</td>
<td>R b</td>
<td>Receive b</td>
</tr>
<tr>
<td>12</td>
<td>Relay 2b</td>
<td>2-Mbit Alarm</td>
</tr>
<tr>
<td>13</td>
<td>S b</td>
<td>Signal Element Timing b</td>
</tr>
<tr>
<td>14</td>
<td>Relay 3b</td>
<td>ISO/MPEG Alarm</td>
</tr>
<tr>
<td>15</td>
<td>not used</td>
<td></td>
</tr>
</tbody>
</table>
A1.7 Additional Data Interface

The Additional Data interface allows the output of the PAD (Program Associated Data).

Remark Functional Restriction

Presently an output of PAD (Program Associated Data) is not implemented.

TAB. 11 PIN ASSIGNMENT: ADDITIONAL DATA INTERFACE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type: DTE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RXD, Receive Data</td>
<td>Level: V.24, Data Rate: 300 to 38400 Baud, Range: max. 15 m</td>
</tr>
<tr>
<td>3</td>
<td>TXD, Transmit Data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GND, Ground</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A1.8 AES/EBU Interface

The AES/EBU interface allows the transmission of digital audio data.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>V.11, balanced, earth free</td>
</tr>
<tr>
<td>2</td>
<td>TXD a Transmit Data a</td>
<td>max. 100 m</td>
</tr>
<tr>
<td>3</td>
<td>TXD b Transmit Data b</td>
<td>max. 100 m</td>
</tr>
</tbody>
</table>

If the AES/EBU module is equipped the digital audio data stream is available on the OUTPUT LEFT connector. Via the PC the connector OUTPUT RIGHT can be configured as clock input or output. The integrated Sampling Rate Converter adapts the connected clock to the network clock. (Frequency range: 24...64 kHz).

A1.9 Analogue Audio Interface

The analogue audio interface allows the transmission of analogue audio signals and is realized as electronically, balanced interface.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>–20 dBu to +12 dBu</td>
</tr>
<tr>
<td>2</td>
<td>Audio a Out</td>
<td>600 Ω elektr. bal.</td>
</tr>
<tr>
<td>3</td>
<td>Audio b Out</td>
<td></td>
</tr>
</tbody>
</table>

A1.10 Monitor Output (CMD Output)

In parallel to the analogue Stereo output a Mono signal is also available on the monitor output CMD Output. The socket CMD Input has no function.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>Level depends from the setting of the Stereo analogue output</td>
</tr>
<tr>
<td>2</td>
<td>Audio a Out</td>
<td>Impedance: 600 Ω elektr. bal.</td>
</tr>
<tr>
<td>3</td>
<td>Audio b Out</td>
<td></td>
</tr>
</tbody>
</table>
Extension Bus Interface

The Extension Bus allows a cascading of two or more MAGIC systems.

This function is in this variant not available.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>Data Rate: 64-kbit/s to 2,048-Mbit/s Level: V.11, balanced</td>
</tr>
<tr>
<td>2</td>
<td>TXa Transmit Data a</td>
<td>Protocol for RS-485: 1 Startbit 8 Data bits 1 Parity bit 1 Stop bit</td>
</tr>
<tr>
<td>3</td>
<td>Ca Control a</td>
<td>Data Rate: 19200 Bd</td>
</tr>
<tr>
<td>4</td>
<td>RXa Receive Data a</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CLK48a Clock 256x48 kHz a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CLKa Clock Receive a</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND Ground</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TXb Transmit Data b</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cb Control b</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RXb Receive Data b</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CLK48b Clock 256x48 kHz b</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CLKb Clock Receive b</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CTa Control RS485-Bus</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CTb Control RS485-Bus</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C_DATAa RS485-Bus</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C_DATAb RS485-Bus</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>RXD_Va Receive_D_Valid a</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>RXD_Vb Receive_D_Valid b</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TXD_Va Transmit_D_Valid a</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>TXD_Vb Transmit_D_Valid b</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>FSa Frame_Sync a</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>FSb Frame_Sync b</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>
A2.1 Decoder

Coding standard ISO/MPEG Layer II DAB EN 300401
Number of channels $2 \times$ mono or $1 \times$ stereo
Sampling Frequency 48-kHz
Modes Mono Channel, Dual Channel, Stereo, Joint-Stereo
Audio Interface Digital Output acc. AES/EBU Professional with Sample Rate Converter (optional)
Data Interface RS232 for PAD
Error recognition CRC16 in ISO/MPEG data stream

Analogue Outputs

Electronically, balanced Audio Interface (XLR)
Impedance 600 Ω
Level selectable -20 to $+12$ dBu
Headroom 6 dB/10 dB (via jumper selectable)
Frequency range 20...20000 Hz
Equalization Deemphasis acc. ITU-T J.17 or 50/15 μs
THD $K_2 + K_3 \leq 0.025\%$ (f = 1 kHz)
S/N approx. 90 dB unweighted
Crosstalk $(L \leftrightarrow R) > 80$ dB (f = 10 kHz)
Level deviation ± 0.2 dB with f=1 kHz

Level Control (left and right channel)

Threshold value -24 dB below the selected nominal level

1 Function not implemented
A2.2 Interface unit with multiplexer

Signalling/Synchronization
- ETI EN 300799, Ensemble Transport Interface
- ETI (NA, G.704)5592
- ETI (NA, G.704)6376
- ETI (NI, G.703)
DAB modes: I, II, III, IV

Line interfaces
- E1 2.048-Mbit/s
 - G.703/G.704

Additional Data interfaces
- LSD1 max. 38400 Baud, V.24, asynchronous
- HSD1 64/128-kbit/s, V.11 level, balanced

User interfaces
- PC control max. 38400 Baud, V.24, asynchronous
- TTL signalling 5 In-/outputs TTL level, programmable
- Alarm interface 3 potential free relays

A2.3 Power Supply
- Voltage 90 to 253 V (50/60 Hz)
- Power consumption max. 35 W

A2.4 Dimensions
- H × B × T 44 × 449 × 450 (mm)
- Weight ca. 6 kg

A2.5 Additional Information
- EMC VDE 0878, Limit B
- Electrical Safety EN 60950
- Temperature +5 °C to 40 °C
- Relative Humidity 5% ... 85%

1 Function is not implemented
A3.1 Order Numbers

MAGIC ETI Audio Decoder 800090

Accessoires

AES/EBU Module 500007
PC cable 490003

A3.2 Delivery Range

- MAGIC ETI Audio Decoder
- Windows PC Software
- Power cable
- Adhesive feets
- ETSI mounting brackets
- Documentation
Symbols

#1 24
#2 24
#3 24

Numerics

10 dB 20
19200 Baud 30
19-inch racks 23
2 Mbit/s 19
24-kHz 43
2-Mbit/s 16, 30, 38
300799 64
50/15 µs 18
6 dB 20
9600 Baud 30

A

About ETI Decoder 37
ADD. DATA 15
Administration 35
AES/EBU 21, 61
AES/EBU clock 31
AIS 38
ALARM (LED) 24
Alarm Details 50
Alarm Settings 49
Alarm Status 52
analog 31
Application 47
Audio 31
Audio Stream 50
Audio-Stream 32
AVT-ETI-DECODER.mib 52

B

Beep 32
Block Diagram 45
blue 38
Broadcast Search 46
Buttons 32

C

Capacity Units 43

CLOCK 39
CMD Input 61
CMD Output 61
Coding mode 43
COM Port 30, 53
Com Port 30
Configuration 29, 30, 46
CONNECT (LED) 24
Copyright 43
CRC Errors 35
CRC4-Multi-Frame 16, 31
CU 43

D

DAB Mode 40
Data 35
Decoded Subchannel at Startup 32
Decoder 41
Decoder Alarm Sensitivity 31
digital 31
dimensions 23
DM001 31
Double-Frame 16, 31
DUAL CHANNEL 18

E

E1 16, 19, 56, 64
Earthing bolt 23
EMC 64
EN 300799 64
Encoder 31
Ensemble Multiplexer 31
Enterprise ID 52
Eprom 35
Error Level 40
Errors 43
ETI Decoder 45
ETI Mode 40
Exit 29
Extension Bus 41
External 31
External Clock 30

F

Fast Information Channel 40
FIC included 40
<table>
<thead>
<tr>
<th>File</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Length</td>
<td>40</td>
</tr>
<tr>
<td>Framing</td>
<td>40</td>
</tr>
<tr>
<td>Freq.</td>
<td>43</td>
</tr>
<tr>
<td>Front-Panel-Buttons</td>
<td>32</td>
</tr>
<tr>
<td>Fuse</td>
<td>24</td>
</tr>
</tbody>
</table>

G
- G.703 64
- G.704 64
- Gateway 46
- Generate Authentication Failure Traps 49
- Generate Trap on change 51
- Grading 50
- green 38

H
- Headroom 20
- Help 37
- High 31
- HSD 59, 64
- Humidity for operation 23

I
- i2_eti 35
- IFE 41
- Interface 19
- Internal 31
- Internal Clock 30
- internet 35
- IP Mode 46
- IP Parameter 48
- ISO/MPEG 43

J
- J.17 18
- JOINT STEREO 18

K
- Kernel 47

L
- LED 43
- LEDs 24
- Line Interface 30
- LOCAL D-ALARM 38
- LOCAL N-ALARM 38
- Lock 32
- Low 31
- LSD 64

M
- MAGIC 31
- Mains
 - frequency 23
 - voltage 23
- Management Information Base 50
- MIB 50, 52
- Mode 43
- Modify 51
- module 21
- MONO 18
- MPEG Decoder 50
- Multiplexer 50

N
- N-Alarm 38
- Name 50
- Net Mask 46
- Network Management System 45
- NMS IP Address 49
- No communication with Audio Decoder 41
- None 30
- Number of Subchannels 40

O
- Odd 30
- Operating safety 9
- Original 43
- Output 31
- OUTPUT LEFT 61
- Output Level 31
- OUTPUT RIGHT 61

P
- PAD 15
- Parameter 48
- Password 49
- PC 64
- PC connected 29
- PC not connected 30
- Port 53
- Port 1 and Port 2 48
- Port 2 45
- POWER (LED) 24
- Power consumption 23
- Primary 43
- Private Community Name 49
- Program 35
- Program Associated Data 15
- Protection Level 43
- Public Community Name 49
R

Rate 43
Recovered Clock 30
red 38
Refresh 42
Remote Ctrl. Port 54
Rohde & Schwarz 31
RS232 45

S

SAD 43
Safety of operation 9
Sampling Frequency 43
SCID 43
Search 46
Search by IP 46
Serial 46
Service Component 42
Service Organization 42
SIGNAL 38
Signalling (LEDs) 24
Size 43
SNMP 45, 53
SNMP Agent 45, 50
SNMP AGENT Admin 46, 47, 48
Snmp4Eti.ap 47
Software Download 35
Start 35
Static IP 46
Status 38, 40, 41, 43
STEREO 18
Subchannels 43
Switch to TCP/IP Control Interface 53
Switching on mains 23
SYNC 38
Sync. Status 50
System 46, 47
System Alarm Counter 41
System name 48
System Panel 35

T

T1 56
Table-top unit 23
Trap 51
Trap Community Name 49
Trap Port 49
TTL 64
Type 43

U

Upgrade 47